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Abstract. Double-odd curves are curves with order equal to 2 modulo 4. A prime or-

der group with complete formulas and a canonical encoding/decoding process could

previously be built over a double-odd curve. In this paper, we reformulate such curves

as a specific case of the Jacobi quartic. This allows using slightly faster formulas for

point operations, as well as defining a more efficient encoding format, so that decoding

and encoding have the same cost as classic point compression (decoding is one square

root, encoding is one inversion). We define the prime-order groups jq255e and jq255s

as the application of that modified encoding to the do255e and do255s groups. We fur-

thermore define an optimized signature mechanism on these groups, that offers shorter

signatures (48 bytes instead of the usual 64 bytes, for 128-bit security) and makes sig-

nature verification faster (down to less than 83000 cycles on an Intel x86 Coffee Lake

core).

1 Introduction

Elliptic curves are a common way of defining finite groups on which the discrete logarithm

problem is believed to be hard; on top of such groups, various protocols can be built. For se-

cure protocol designs, a prime-order group is often needed. Elliptic curves with a non-prime

order, such as the well-known twisted Edwards curve Curve25519, have led to some serious

issues when used in some protocols[13]. The order of a curve meant for cryptographic pro-

tocols is often written as the product hr, with r being the prime of interest, and h the co-
factor. Twisted Edwards curves allow for very efficient computations, but their cofactor h is

always a multiple of 4. A prime order group abstraction can be built on top of some twisted

Edwards curves with cofactor 4 or 8, using the Decaf/Ristretto technique[3,17]. Applied to

Curve25519, the resulting group is called ristretto255 and is currently undergoing standard-

ization as a RFC[35].

In [31], we investigated a different solution, focusing on curves with order 2r (i.e. cofactor

2), which we called double-odd curves. On top of such curves, we could build prime order

group abstractions, with appropriate complete formulas for applying the group law to group

elements, as well as canonical encoding and decoding rules. Generally speaking, the defined

double-odd groups do255e and do255s offer the usual 128-bit security level with performance

roughly similar to that of ristretto255 (general point addition is a bit slower at 10M instead

of 8M, but sequences of doublings are faster, with a per-doubling cost down to 1M+5S for

do255e). In this paper, we improve on double-odd curves, in three main steps:

1. Through a change of variable, we reformulate double-odd curves as a specific case of

the extended Jacobi quartic, which gives access to more already known formulas[19]. We



thus obtain complete formulas on point addition with about the same cost as previously

(8M+3S instead of 10M), but a lower overhead for doublings, so that a single doubling

costs only 1M+6S, and subsequent doublings in a sequence cost only 1M+5S each. The

overall performance is thus improved.

2. The new formulas are complete on the whole curve, not just on the subset we used in the

previous double-odd curves. This allows a change of the encoding format, so that decod-

ing a group element from its compressed format now uses only a square root operation,

with no additional Legendre symbol computation. We thus define new groups called

jq255e and jq255s, which are the same groups as do255e and do255s but with a different

encoding format. Decoding and encoding operations are now as fast as in Curve25519;

encoding is faster than in ristretto255.

3. Since the encoding rules changed, we take the opportunity to redefine the ECDH and

Schnorr signature schemes on these groups (e.g. to replace SHAKE with the definitely

faster BLAKE2s). Using an idea which has already been proposed several times (includ-

ing by Schnorr himself), we define a signature format with a reduced size: we can encode

signatures in only 48 bytes, quite smaller than the 64 bytes of Ed25519, while offering

the same 128-bit security level. The reduction in size can be an important advantage, es-

pecially in embedded systems with severe constraints on communication channels. As

a nice side effect, the size reduction also makes signature verification substantially faster;

our implementation (in Rust) achieves signature verification in less than 83000 cycles on

an Intel x86 Coffee Lake core (less than 93000 cycles if we include the cost of decoding

the public key).

In total, the two newly defined groups jq255e and jq255s achieve performance on par

with, or better than, Ed25519 and ristretto255, with shorter signatures and faster verifica-

tion, while providing the clean prime order group abstraction with a compact, canonical and

verified encoding format, that is convenient for building secure cryptographic protocols.

In this paper, we first recall some background on double-odd curves (section 2), then

show the conversion to a Jacobi quartic (section 3). The new jq255e and jq255s groups are

formally defined in section 5. Complete formulas working over extended coordinates are de-

tailed in section 6. Section 7 discusses the new signature format, and includes explicit perfor-

mance benchmarks. In appendix A, a specification of the ECDH and signature algorithms is

included.

Our implementation is available as part of the crrl library:

https://github.com/pornin/crrl

This paper, as well as the original whitepaper[31], some graphical overview of double-odd

curves, and links to various other implementations (notably in C and in Python), are available

on the double-odd curves Web site:

https://doubleodd.group/

2 Background on Double-Odd Curves

Double-odd curves were formally defined and described in [31]; we recall here the principal

properties of such curves.
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Curve Equation andOrder. We work in a finite fieldFq of order q, with a characteristic

p ≥ 5. For a field element x ∈ Fq, we write that x ∈ QR if x is a square in the field, and x ∉ QR
otherwise. For any two constants (a, b) ∈ Fq × Fq such that b ∉ QR and a2 − 4b ∉ QR, the

curve C (a, b) is the set of points (x, y) ∈ Fq × Fq such that y2 = x(x2 + ax + b); a formal

“point-at-infinity”, denotedO and with no defined coordinates x or y, is adjoined to the curve.

This curve is double-odd, i.e. has order 2r for some odd integer r. It can be shown that the

two conditions on a and b imply that the curve is well-defined and non-singular, and that any

double-odd curve on Fq can be converted to such an equation with an adequate change of

variable.

We denoteC (a, b) [r] the subgroup of r-torsion points, i.e. the pointsP on the curve such

that rP = O. A double-odd curve contains a single point of order 2, which we denote N ; its

coordinates are (0, 0). Every point P ∈ C (a, b) can be decomposed uniquely into P = Q+R
with Q an r-torsion point, and R ∈ {N,O}.

Coordinates. For a point P = (x, y), we also define the coordinates w = y/x and u =

1/w = x/y. For all points other than N andO, the x, y, w and u coordinates are well-defined

and non-zero; we formally set w = 0 and u = 0 for both N and O. For any point P =

(x, y, w, u) (with P ≠ N,O), the following properties hold:

– Point −P has coordinates (x,−y,−w,−u).
– Point P +N has coordinates (b/x,−by/x2,−w,−u).
– Exactly one of P and P +N is an r-torsion point.

– Coordinate x ∈ QR if and only if P ∈ C (a, b) [r].
– Point 2P ∈ C (a, b) [r], and point 2P +N ∉ C (a, b) [r].
– The point−P+N is the only other curve point with the samew coordinate (equivalently,

the same u coordinate) as P.

Prime-Order Group. From C (a, b), we can define the group G(a, b) as the quotient

group ofC (a, b) by {N,O}. In other words, each element ofG(a, b) is a pair of points {P, P+
N }, where P is an r-torsion point and P + N is not; the points P and P + N are called the

representants of the group element. G(a, b) has order r; if we choose the curve such that r is

prime, then we obtain a prime-order group which is convenient for building cryptographic

protocols. The original double-odd curves whitepaper[31] leveraged the properties described

above in order to efficiently implement G(a, b):
– Each group element is systematically represented by its non-r-torsion pointP+N . Thus,

the group neutral is represented by N , with defined coordinates, thereby removing the

troublesome “point-at-infinity”.

– Addition of P + N and Q + N can be done by using P and Q + N , one being an r-

torsion point and the other a non-r-torsion point, thus always different points (even if

representing the same group element), which avoids the known special cases of the usual

addition law on elliptic curves.

– A group element can be encoded as itsw coordinate; upon decoding, two matching curve

points are rebuilt, but only one of them is a non-r-torsion point, and it can be identified

by computing a Legendre symbol on its x coordinate.

Using fractional (x, u) coordinates, generic point addition can then be computed with cost

10M, and point doubling in cost 3M+6S.
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Isogenies. Some useful isogenies also exist on double-odd curves. The C (a, b) double-

odd curve is isogenous to another double-odd curve C (−2a, a2 − 4b). Two isogenies that

map between these two curves are the following:

ψ1 : C (a, b) −→ C (−2a, a2 − 4b)

(x, w) ↦−→
(
w2,− (x − b/x)

w

)
ψ ′
1/2 : C (−2a, a

2 − 4b) −→ C (a, b)

(x, w) ↦−→
(
w2/4,− (x − (a

2 − 4b)/x)
2w

)
These isogenies are in fact exactly the ones that can be obtained from Vélu’s formulas[36], and

have kernel {N,O} in their respective definition curves. Moreover, for any P ∈ C (a, b), we

have ψ ′
1/2 (ψ1 (P)) = 2P. Using these isogenies, efficient point doubling formulas on G(a, b)

can be defined, allowing per-doubling overhead in long sequences of successive doublings to

be as low as 1M+5S or 2M+4S for some double-odd curves.

3 Double-Odd Curves as JacobiQuartics

For a point P = (x, u) ∈ C (a, b), with P ≠ N,O, we define an additional coordinate:

e = u2
(
x − b

x

)
This value is well-defined, since curve points other than N and O have a non-zero x coordi-

nate. Using the curve equation, we can also derive another expression:

e =
x2 − b

x2 + ax + b

Since x2 + ax + b ≠ 0 for all x (otherwise, the curve would have additional points of order 2

and would not be double-odd), this expression is also well-defined, and can be applied to N
as well, leading to e = −1 for that point. For reasons explained later on, we formally define

e = 1 for the point-at-infinityO. Since b ∉ QR, x2 − b can never be zero, and thus e ≠ 0 for

all curve points.

Given e and u for a point, it is possible to recompute the x coordinate by noticing that:

x =
1

2u2

(
u2

(
x − b

x

)
+ u2

(
x + b

x

))
=

1

2u2
(
e + 1 − au2

)
We can thus use (e, u) coordinates for representing points. With our conventions, all points

have such coordinates, including N = (−1, 0) andO = (1, 0).
In (e, u) coordinates, the curve equation becomes:

e2 = (a2 − 4b)u4 − 2au2 + 1
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which is a form known as the (extended) Jacobi quartic, first studied by Jacobi in the 19th

century[20]. In the usual formulation, the equation is denoted Y 2 = DX4 + 2AX2 + 1, with

subvariants depending on whether D is a square or not. In our case, e and u coordinates play

the role of Y and X , respectively, and the D constant is a2 − 4b, which is a non-square for all

double-odd curves.

The mapping goes in both directions: a Jacobi quartic Y 2 = DX4 + 2AX2 + 1 is turned

into a curve of equation y2 = x(x2 + ax + b) with a = −A and b = (A2 − D)/4 by setting

x = (Y + 1 + AX2) and y = x/X . Thus, the Jacobi quartic Y 2 = DX4 + 2AX2 + 1 is a

double-odd curve if and only if D ∉ QR and A2 −D ∉ QR.

There exists some extensive literature on Jacobi quartics and their formulas[8,12,20,37].

The following classic point addition formulas can also be derived straightforwardly from the

(x, u) formulas in [31]; for points P1 = (e1, u1) and P2 = (e2, u2), their sum P3 = (e3, u3) =
P1 + P2 can be computed as:

e3 =
(1 + (a2 − 4b)u2

1
u2
2
) (e1e2 − 2au1u2) + 2(a2 − 4b)u1u2 (u2

1
+ u2

2
)

(1 − (a2 − 4b)u2
1
u2
2
)2

u3 =
e1u2 + e2u1

1 − (a2 − 4b)u2
1
u2
2

These formulas are complete; they work on all curve points, including the point of order

two N , and the point-at-infinity O, thanks to the formal definitions of their coordinates as

(−1, 0) and (1, 0), respectively. We also note that when P = (e, u), then P + N = (−e,−u),
which further validates the choice of (1, 0) forO.

4 Group Element Encoding and Decoding

The main virtue of the representation of curve points in the Jacobi quartic is that the addition

formulas work for all points on the curve. In the original definition ofC (a, b) in [31], the (x, u)
formulas were complete on the group under the assumption that both input points were the

non-r-torsion representants of their respective group elements (if the formulas were to be

used on P and −P + N for some point P, then the x formula would fail). This required a

point encoding format and decoding process that reliably return a non-r-torsion point. In

that original description, this was done in the following way:

1. From the input field elementw, get the two matching x coordinates by solving the equa-

tion x2−(w2−a)x+b = 0. This involves computing the discriminantΔ = (w2−a)2−4b,

then extracing its square root

√
Δ. The two candidates are x = ((w2 − a) ±

√
Δ)/2.

2. Choose the solution which is not a square. This requires computing a Legendre symbol.

The Legendre symbol computation is normally less expensive than the square root, but it is

not negligible either, depending on the involved architecture; for a field of about 256 bits and

a large 64-bit CPU, the cost of the Legendre symbol can be up to about 70% that of a square

root, with optimized constant-time implementations of both operations. Removing the need

of the additional Legendre symbol would make the decoding process noticeably faster. This

can be done when using the Jacobi quartic, though it requires changing the encoding rule, so

that the new encoding is not backward compatible with the previous one.
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Sign. Let sign be an arbitrary “sign function” over the elements of Fq, with the following

characteristics:

– For any z ∈ Fq, sign(z) = 0 or 1.

– sign(0) = 0.

– For any z ∈ Fq such that z ≠ 0, sign(−z) = 1 − sign(z).

A value z such that sign(z) = 1 is said to be negative, while other values are non-negative.

Any convention that fulfills these rules is usable; in practice, when Fq is the field of integers

modulo a prime q, we may use the least significant bit of z when represented by an integer

in the 0 to q − 1 range. For usual implementations of such finite fields, this sign convention

can be evaluated inexpensively, with a cost lower than that of a multiplication in the field, i.e.

much lower than that of a Legendre symbol, and negligible with regard to the cost of a square

root extraction.

Encoding. A group element represented by the point P = (e, u) is encoded into a field

element u with the following process:

1. If sign(e) = 1, then return −u; otherwise, return u.

In other words, the group element has two representants, points P = (e, u) and P + N =

(−e,−u). Exactly one of these two points has a non-negative e coordinate; we return the u
coordinate of that point.

Decoding. Given an input field element u, the decoding process works as follows:

1. Compute Δ = (a2 − 4b)u4 − 2au2 + 1.

2. Compute e =
√
Δ; if Δ has no square root, then the input u is invalid.

3. If sign(e) = 1 then replace e with −e.
4. Return point (e, u).

This process simply computes e2 from the curve equation, then extracts e as a square root,

choosing the non-negative root, since that is the root that the encoding process used. Note

that a single square root computation is needed, with no extra expensive operation. Moreover,

the obtained point is in affine coordinates; there is no need to merge that root extraction with

an inversion into an aggregate “square root of a ratio” operation, as is commonly used in the

decoding of Ed25519 public keys[21].

Contrary to the original encoding/decoding rules from [31], this process may return any

curve point, not necessarily the non-r-torsion points only. This is not a problem if all further

operations use formulas that are complete on the curve, such as the ones detailed thereafter.

If the original (x, u) formulas must be used, then an extra Legendre symbol will be needed to

select the “right” representant (i.e. the point whose x coordinate is not a square).

Comparison with Decaf/Ristretto. The encoding/decoding process described above

can be interpreted as a reduced version of the Decaf[17] process. Decaf works on a twisted

Edwards curve with cofactor 4; the cofactor is eliminated by quotienting the curve with the
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subgroup of 4-torsion points. The encoding and decoding rules then select a canonical rep-

resentant through the use of an appropriate sign convention. Ristretto[3] is an adaptation of

that process for twisted Edwards curves with cofactor 8, such as the well-known Curve25519.

For both Decaf and Ristretto, the decoding involves mainly a square root computation;

another square root is needed when encoding. In the case of double-odd Jacobi quartics, we

also need a square root for decoding, but the simpler situation (cofactor is only 2) allows for

a direct encoding with only the inversion stemming from normalization (since, in practice,

points are internally represented with some sort of fractional coordinate system). In general,

inversions are more efficient than square roots, for two reasons:

– In small embedded CPUs (microcontrollers), inversion can be performed with an opti-

mized binary GCD[30] or a similar quadratic algorithm[6] with a cost much lower than

the modular exponentiation used at the core of a square root algorithm (on an ARM

Cortex M0+ with the field of integers modulo 2
255 − 19, inversion can be done in about

20% of the cost of a square root).

– On large systems, the speed difference is less dramatic, but inversions are amenable to

batching: using a trick due to Montgomery, a batch of n field elements can be inverted

with a single inversion in the field, and an extra 3(n−1)multiplications, i.e. an asymptotic

overhead of just 3 multiplications per value to invert. No such batching optimization is

known for square roots
1
.

Our new encoding/decoding rules provide the same performance as the usual point com-

pression/decompression process that can be used on any elliptic curve.

5 The jq255e and jq255s Groups

We formally define the jq255e and jq255s groups. They are the same groups as the do255e and

do255s groups defined in [31], except for the encoding and decoding rules, which use the pro-

cess described above (in section 4). These groups offer the traditional “128-bit” security level,

with a prime order (no non-trivial cofactor to deal with) and canonical encoding/decoding

rules. We recall here the group parameters; see [31] for details on how they were chosen.

jq255e

– Field Fq with q = 2
255 − 18651

– Curve equation parameters: (a, b) = (0,−2)

y2 = x(x2 − 2)
e2 = 8u4 + 1

– Curve order: 2r, with r = 2
254 − 131528281291764213006042413802501683931

1
As was noted in [17], Decaf encoding can be optimized in that way if combined with point dou-

bling, i.e. encoding the double of each element instead of the element itself. This requires backporting

that extra doubling into the protocol that uses Decaf, and thus is somewhat at odds with the goal of

providing a clean prime order group abstraction.
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– Conventional generator G:

Ge = −3
Gu = −1

This curve’s specific parameters allow for the most efficient known point doubling for-

mulas among double-odd curves, with a per-doubling cost of 1M+5S only when used in se-

quences of doublings.

This curve is also a GLV curve[16], for which an efficient non-trivial endomorphism is

known. Using the notations of [31] (section 6.2), the function δ(e, u) = (e, ηu) for a given

η =
√
−1 in Fq computes in a single field multiplication the product of a source point by a

given scalar µ (which is a square root of −1 modulo r). This provides a non-negligible speed-

up for some protocols that multiply a dynamically obtained point by a scalar, e.g. in a Diffie-

Hellman key exchange.

jq255s

– Field Fq with q = 2
255 − 3957

– Curve equation parameters: (a, b) = (−1, 1/2)

y2 = x(x2 − x + 1/2)
e2 = −u4 + 2u2 + 1

– Curve order: 2r, with r = 2
254 + 56904135270672826811114353017034461895

– Conventional generator G:

Ge = 69296508528058375464853488337515796708

37850621479164143703164723313568683024

Gu = 3

This curve allows per-doubling costs of 2M+4S (within sequences of doublings). It does

not otherwise have noticeable structure; e.g. its complex multiplication discriminant is very

large, as would be expected from any randomly chosen curve. Contrary to jq255e, it does not

offer an efficient endomorphism, but it is still quite efficient as a general purpose curve. This

curve is meant as an alternative to jq255e in case it is feared that the low CM discriminant of

jq255e may lead to exploitable weaknesses (no such attack is currently known, even though

GLV curves have been proposed and used for more than 20 years now).

Other parameters. The double-odd curves underlying jq255e and jq255s were chosen

so as to allow use of the most optimized point doubling formulas; this required varying the

field modulus, as described in [31] (section 5). For implementations of operations on field ele-

ments that internally use 32-bit or 64-bit limbs, all moduli 2
255−m form < 2

15
yield the same

performance, and that kind of internal representation is what achieves the best performance

in general on both small embedded CPUs (e.g. ARM Cortex M0+ and M4) and large CPUs

(e.g. Intel x86 with Skylake or more recent cores). However, if m is very small (i.e. m = 19,

the smallest m such that 2
255 − m is prime), then that can lead to some minor speed-ups in
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representations with more limbs, specifically 9 or 10 limbs, that themselves can better support

implementations that leverage SIMD opcodes (e.g. AVX2 or NEON), in conjunction with

specific curve point addition formulas or with higher-level batching of operations.

With modulus q = 2
255 − 19, then point doubings will have cost 2M+5S (which is still

quite efficient). It is still interesting to choose constants a and b such that a, b and a2 − 4b are

as small as possible. Enumeration of all combinations with |a| ≤ 10 and |b| ≤ 10 (as plain

integers) finds exactly two double-odd curves of order 2r with r prime: C (7, 8) and C (−7, 8)
(these two curves are isomorphic to each other, since −1 ∈ QR in that field). Extending the

range of a and b to [−20 ...+20] yields the curve C (14, 17) (and the isomorphic C (−14, 17)),

which is isogenous to C (7, 8) (ψ1 maps from C (−7, 8) to C (14, 17)). If experiments with

q = 2
255 − 19 are attempted, then it is suggested to use C (7, 8).

6 Formulas

For an efficient implementation, we use the extended coordinates proposed by Hisil, Wong,

Carter and Dawson[19] (the same coordinate system had in fact already been described by

Duquesne[15], albeit with different notations; we use here the notations of Hisil et al, which

are more convenient). A point P = (e, u) is represented as the quadruplet (E:Z:U :T ) such

that Z ≠ 0, e = E/Z, u = U/Z and u2 = T/Z (this implies that U 2 = TZ). There are q − 1
possible quadruplets for a given curve point (for all possible non-zero values of Z).

Coordinates of−P are (E:Z:−U :T ). Coordinates of P +N are (−E:Z:−U :T ). Since P
and P +N represent the same group elements, we may freely move between P and P +N as is

convenient. The neutral element in the groupG(a, b) can be represented byN = (−Z:Z:0:0)
or byO = (Z:Z:0:0), for any Z ≠ 0.

In the rest of this section, extended coordinates are designed as ezut. For implementing

efficient doublings, we also make use of Jacobian (x, w) coordinates (denoted xwj), in which

a point P = (x, w) is represented as a triplet (X :W :J ), such that x = X/J 2 and w = W/J ;

in xwj coordinates, N = (0:W :0) for any W ≠ 0, and O = (W 2
:W :0) for any W ≠ 0.

Following these conventions for N andOmakes all formulas described thereafter complete.

6.1 Decoding

Algorithm 1 decodes an input field element into a point that represents an element of the

group G(a, b). In practical situations, a binary format is needed (i.e. we encode into bytes);

we assume here that a proper encoding of field elements into bytes has been defined (see ap-

pendix A.1).
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Algorithm 1 Decoding from a field element

Require: u ∈ Fq
Ensure: P = (E:Z:U :T ), or Invalid

1: t ← u2

2: Δ← (a2 − 4b)t2 − 2at + 1
3: E ←

√
Δ ⊲ The

√
operator returns Invalid for non-squares.

4: if E = Invalid then return Invalid

5: if sign(E) = 1 then
6: E ← −E
7: Z ← 1

8: U ← u
9: T ← t

6.2 Encoding

Algorithm 2 performs the reverse of algorithm 1: it turns a group element (represented by a

point P) into a field element u. The same u is obtained for both possible representant points

of a given element of G(a, b).

Algorithm 2 Encoding into a field element

Require: P = (E:Z:U :T )
Ensure: u ∈ Fq

1: K ← 1/Z
2: u← KU
3: if sign(KE) = 1 then
4: u← −u

6.3 General Point Addition

Given points P1 = (E1:Z1:U1:T1) and P2 = (E2:Z2:U2:T2), their sum P3 = P1 + P2 =

(E3:Z3:U3:T3) can be computed as:

E3 = (Z1Z2 + (a2 − 4b)T1T2) (E1E2 − 2aU1U2) + 2(a2 − 4b)U1U2 (Z1T2 + Z2T1)
Z3 = (Z1Z2 − (a2 − 4b)T1T2)2

U3 = (E1U2 + E2U1) (Z1Z2 − (a2 − 4b)T1T2)
T3 = (E1U2 + E2U1)2

Algorithm 3 implements these formulas.
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Algorithm 3 Point addition (cost: 8M+3S)

Require: P1 = (E1:Z1:U1:T1) and P2 = (E2:Z2:U2:T2)
Ensure: P3 = P1 + P2 = (E3:Z3:U3:T3)

1: n1 ← E1E2
2: n2 ← Z1Z2
3: n3 ← U1U2

4: n4 ← T1T2
5: n5 ← (Z1 + T1) (Z2 + T2) − n2 − n4 ⊲ n5 = Z1T2 + Z2T1
6: n6 ← (E1 + U1) (E2 + U2) − n1 − n3 ⊲ n6 = E1U2 + E2U1

7: n7 ← n2 − (a2 − 4b)n4 ⊲ n7 = Z1Z2 − (a2 − 4b)T1T2
8: E3 ← (n2 + (a2 − 4b)n4) (n1 − 2an3) + 2(a2 − 4b)n3n5
9: Z3 ← n2

7

10: T3 ← n2
6

11: Z3 ← ((n6 + n7)2 − n6 − n7)/2 ⊲ Z3 = n6n7

The cost estimate of 8M+3S assumes that multiplication by the constants a2 − 4b and

−2a are fast (there are three such multiplications in the formulas above). On the jq255e group,

a2 − 4b = 8 and −2a = 0; on jq255s, a2 − 4b = −1 and −2a = 2. The computation of Z3

can be replaced with the simple product n6n7; depending on the field implementation, target

system, compiler version, and the usage context, this alternate computation may or may not

provide slightly better or slightly worse performance.

When point P2 is in affine coordinates (i.e. Z2 = 1), then the computation of n2 = Z1Z2

vanishes, and the computation of n5 simplifies into n5 = Z1T2 + T1. The total cost is then

slightly lower, at 7M+3S. If both P1 and P2 are in affine coordinates, then n2 = 1 and n5 =

T1 + T2, for a cost of 6M+3S.

6.4 Negation and Subtraction

A pointP is negated by negating itsU coordinate; the other coordinate values are unmodified.

Subtraction is performed by negation of the second operand, followed by addition. Negation

in the field is inexpensive; therefore, point subtraction has about the same cost as point addi-

tion.

6.5 Doubling to Jacobian (x,w)

While point doublings can be performed correctly with the general addition formulas, a sub-

stantially faster way involves temporarily switching toxwj coordinates. The following formu-

las compute the point 2P = (X ′:W ′
:J ′) from P = (E:Z:U :T ) (with three possible choices

for the computation of W ′
):

X ′ = E4

W ′ = 2Z2 − 2aU 2 − E2 = Z2 − (a2 − 4b)T 2 = E2 + 2aU 2 − 2(a2 − 4b)T 2

J ′ = 2EU

11



Since we can use both P and P + N as representants for group elements, we can also use the

following formulas that output 2P +N = (X ′:W ′
:J ′) from P = (E:Z:U :T ):

X ′ = 16bU 4 = 16b(TZ)2
W ′ = E2 + 2aU 2 − 2Z2 = (a2 − 4b)T 2 − Z2 = 2(a2 − 4b)T 2 − E2 − 2aU 2

J ′ = 2EU

It can be verified that if the source is O = (Z:Z:0:0) or N = (−Z:Z:0:0) for some Z ≠

0, then these formulas indeed yield (Z4
:Z2

:0) and (0:−Z2
:0), respectively, i.e. correct xwj

representations ofO and N .

Algorithm 4 is applicable to all double-odd curves and computes 2P +N from P in cost

2M+2S.

Algorithm 4 Doubling ezut to xwj (cost: 2M+2S)

Require: P = (E:Z:U :T )
Ensure: P′ = 2P +N = (X ′:W ′

:J ′)
1: n← U 2 ⊲ n = U 2 = TZ
2: X ′ ← 16bn2

3: W ′ ← ((a2 − 4b)T + Z) (T − Z) + (a2 − 4b − 1)n ⊲W ′ = (a2 − 4b)T2 − Z2

4: J ′ ← 2EU

When working in a field Fq where q = 3 mod 4, −1 ∉ QR, and therefore 4b − a2 ∈ QR,

and we can use

√
4b − a2 to change the computation of W ′

into:

W ′ = 2(
√
4b − a2)n − ((

√
4b − a2)T + Z)2

This lowers the cost down to 1M+3S, provided that multiplications by the constant value√
4b − a2 are fast; this is assuredly the case for jq255s, where 4b − a2 = 1. Doubling to xwj

for jq255s, using that trick, is shown in algorithm 5.

Algorithm 5 Doubling ezut to xwj on jq255s (cost: 1M+3S)

Require: P = (E:Z:U :T ) ∈ C (−1, 1/2)
Ensure: P′ = 2P +N = (X ′:W ′

:J ′)
1: n← U 2 ⊲ n = U 2 = TZ
2: X ′ ← 8n2

3: W ′ ← 2n − (T + Z)2 ⊲W ′ = −T2 − Z2

4: J ′ ← 2EU

On jq255e, and more generally on double-odd curves with a = 0, the generic formulas

lead to a cost 2M+2S (the requirement that both b and a2 − 4b are non-squares, combined

with a = 0, implies that −4 ∈ QR, which is not possible in a field Fq with q = 3 mod 4).

12



However, if computing 2P instead of 2P +N , then it is possible to obtain 1M+3S formulas

applicable to such curves; this is shown in algorithm 6.

Algorithm 6 Doubling ezut to xwj on C (0, b) (e.g. jq255e) (cost: 1M+3S)

Require: P = (E:Z:U :T ) ∈ C (−1, 1/2)
Ensure: P′ = 2P = (X ′:W ′

:J ′)
1: n← E2

2: X ′ ← n2

3: W ′ ← 2Z2 − n ⊲W ′ = 2Z2 − 2aU 2 − E2
4: J ′ ← 2EU

6.6 Conversion from xwj to ezut

A point (X :W :J ) in xwj coordinates can be converted back to ezut coordinates (E:Z:U :T )
with the following:

Z = W 2

T = J 2

U = JW

E = 2X − Z + aT

SinceW 2
and J 2 are also computed, the product JW can be done with a squaring operation

instead of a multiplication. This is illustrated in algorithm 7.

Algorithm 7 Conversion from xwj to ezut (cost: 3S)

Require: P = (X :W :J )
Ensure: P = (E:Z:U :T )

1: Z ←W 2

2: T ← J2

3: U ← ((W + J )2 − Z − T )/2 ⊲U = JW
4: E ← 2X − Z + aT

6.7 Doublings and Sequences of Doublings

A doubling in ezut coordinates is done trivially by doing the doubling to xwj (with algo-

rithm 4, 5 or 6, depending on the curve type), then converting back the result to ezut with

algorithm 7. This leads to a cost of 2M+5S generically (which matches the best generic for-

mulas from [19]), but only 1M+6S when q = 3 mod 4 (a category that includes jq255s), or

when a = 0 (which is the case of jq255e).

To compute a sequence of n doublings, it is of course possible to invoke the doubling

process n times. However, for some curves (curves C (0, b), such as jq255e, and also specifi-

cally curve jq255s), one can do better by noticing that there exist faster doubling formulas for

these curves when in xwj coordinates. This leads to the following process:

13



1. Compute the first doubling with output in xwj coordinates (algorithm 5 or 6, cost

1M+3S).

2. Compute the next n − 1 doublings over xwj coordinates (algorithm 8 or 9, with cost

2M+4S or 1M+5S per doubling, respectively).

3. Convert the result back to ezut (algorithm 7, cost 3S).

In total, the first doubling costs exactly as much as in the single doubling case (1M+6S) but

extra doublings are cheaper (2M+4S or 1M+5S each). This is beneficial to algorithms that

evaluate long sequences of doublings, in particular multiplication of a point by a scalar, with

classic window optimizations, or wNAF scalar representation.

Algorithms 8 and 9, shown below, detail how fast doublings can be computed on jq255s

and jq255e in xwj coordinates, respectively. These algorithms were already described in the

original double-odd whitepaper[31] and are recalled here for completeness. Like all other al-

gorithms in this paper, they are complete.

Algorithm 8 Doubling on jq255s (xwj) (cost: 2M+4S)

Require: P = (X :W :J ) ∈ C (−1, 1/2)
Ensure: P′ = 2P +N = (X ′:W ′

:J ′)
1: n1 ←WJ
2: n2 ← n2

1

3: n3 ← (W + J )2 − 2n1 ⊲ n3 = W 2 + J2
4: X ′ ← 8n2

2

5: W ′ ← 2n2 − n2
3

6: J ′ ← 2n1 (2X − n3)

Algorithm 9 Doubling on C (0, b) (e.g. jq255e) (xwj) (cost: 1M+5S)

Require: P = (X :W :J ) ∈ C (0,−2)
Ensure: P′ = 2P = (X ′:W ′

:J ′)
1: n1 ←W 2

2: n2 ← n1 − 2X
3: n3 ← n2

2

4: X ′ ← n2
3

5: W ′ ← n3 − 2n2
1

6: J ′ ← J ((W + n2)2 − n1 − n3) ⊲ J ′ = 2JWn2

6.8 Equality Tests

Two points P1 = (E1:Z1:U1:T1) and P2 = (E2:Z2:U2:T2) can be compared with each other

(as representants of group elements) by noticing that P1 and P2 represent the same group el-

ement if and only if ψ1 (P1) and ψ1 (P2) are the same point on curve C (−2a, a2 − 4b), since

{O, N } is the kernel of the ψ1 isogeny. Moreover, for any source point P ∈ C (a, b), ψ1 (P) ∈
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C (−2a, a2 − 4b) [r] (ψ1 only outputs r-torsion points), and the u coordinate uniquely de-

termines a point in the subgroup of r-torsion points. Thus, we only have to compare the u
coordinates of ψ1 (P1) and ψ1 (P2), which are equal to −U1/E1 and −U2/E2, respectively.

This leads us to the following efficient test: P1 and P2 represent the same element in

G(a, b) if and only if U1E2 = U2E1. This test is complete (it also works for N and O) since

the E coordinate is never zero.

A special case is when comparing a point to the group neutral: a point P = (E:Z:U :T )
represents the neutral of G(a, b) if and only if U = 0.

6.9 Field to Group Map

Mapping a field element to a group element is an important support functionality for defin-

ing a hash-to-curve process. Two such maps were previously specified in [31] (sections 3.7 and

6.1.6): the general case, applicable to all double-odd curves with a ≠ 0, is the Elligator2[7]

map, while a special-case map is defined for curves with a = 0, to which Elligator2 does not

apply. Since jq255e and jq255s use the same underlying curves as do255e and do255s, we

can use the same maps, with only an extra final conversion to obtain the (e, u) coordinates

for the obtained points. The map-to-curve processes for jq255e and jq255s are specified in

algorithms 10 and 11, respectively. In these algorithms, all square root computations return

the non-negative root.

Algorithm 10 Mapping a field element to C (0,−2) (jq255e)

Require: f ∈ Fq
Ensure: P = (E:Z:U :T ) ∈ C (0,−2)

1: if f = 0 then
2: returnO = (1:1:0:0)
3: ¤x1 ← 4f 2 − 7
4: ¤x2 ← (4f 2 + 7)

√
−1 ⊲ Use the non-negative square root of −1.

5: ¥x0 ← 4f
6: z1 ← 64f 7 + 176f 5 − 308f 3 − 343f
7: z2 ← −(64f 7 − 176f 5 − 308f 3 + 343f )

√
−1

8: ¥y0 ← 8f 2

9: if z1 ∈ QR then
10: ( ¤x, ¥x, ¤y, ¥y) ← (¤x1, ¥x0,

√
z1, ¥y0)

11: else if zn,2 ∈ QR then
12: ( ¤x, ¥x, ¤y, ¥y) ← (¤x2, ¥x0,

√
z2, ¥y0)

13: else
14: ( ¤x, ¥x, ¤y, ¥y) ← (¤x1 ¤x2, ¥x2

0
,
√
z1z2, ¥y2

0
)

15: ( ¤u, ¥u) ← (¤x¥y, ¥x¤y) ⊲ ( ¤x/¥x, ¤y/¥y, ¤u/¥u) is a point on the dual curve C (0, 8).
16: ( ¤X, ¥X ) ← (−8¤u2, ¥u2)
17: ( ¤U, ¥U ) ← (2¤x¥x¥u, ¤u( ¤x2 − 8¥x2))
18: ( ¤E, ¥E) ← ( ¤X2 + 2 ¥X2, ¤X2 − 2 ¥X2)
19: (E:Z:U :T ) ← ( ¤E ¥U 2

: ¥E ¥U 2
: ¤U ¥U ¥E: ¤U 2 ¥E)
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Algorithm 11 Mapping a field element to C (−1, 1/2) (jq255s)

Require: f ∈ Fq
Ensure: P = (E:Z:U :T ) ∈ C (−1, 1/2)

1: if f = ±1 then
2: returnO = (1:1:0:0)
3: z1 ← −2f 6 + 14f 4 − 14f 2 + 2
4: z2 ← −z1f 2
5: ¥x← 1 − f 2
6: if z1 ∈ QR then
7: ( ¤x, ¤y) ← (−2,√z1)
8: else
9: ( ¤x, ¤y) ← (2f 2,−√z2)

10: if ¤y = 0 then
11: returnO = (1:1:0:0)
12: ( ¤u, ¥u) ← (¤x¥x, ¤y) ⊲ ( ¤x/¥x, ¤y/¥x2, ¤u/¥u) is a point on the dual curve C (2,−1).
13: ( ¤X, ¥X ) ← (2¤u2, ¥u2)
14: ( ¤U, ¥U ) ← (2¥u, ¤x2 + ¥x2)
15: (n1, n2) = ( ¤X (2 ¤X − ¥X ), ¥X ( ¤X − ¥X ))
16: ( ¤E, ¥E) ← (n1 + n2, n1 − n2)
17: (E:Z:U :T ) ← ( ¤E ¥U 2

: ¥E ¥U 2
: ¤U ¥U ¥E: ¤U 2 ¥E)

7 Short and Fast Signatures

Alternate Signature Encodings. In [31], digital signatures over groups do255e and

do255s were defined as classic Schnorr signatures, yielding 64-byte signatures, the same size as

standard Ed25519 signatures[21], and with similar performance. Since jq255e and jq255s use

a different encoding format, and thus break compatibility with do255e and do255s, we have

an opportunity to define a slightly different signature scheme that yields better performance,

namely shorter encodings (48 bytes instead of 64), and also faster verification.

A Schnorr signature scheme[33] can be described as follows:

– The private key is a secret scalar d (an integer modulo the group order r). The corre-

sponding public key is Q = dG, with G being the conventional base point in the group.

– To sign a message m, the following computations are performed:

1. Generate a per-signature secret scalar k (uniformly among integers modulo r).

2. Compute R = kG (this is the commitment).

3. Compute c = H (R ∥ Q ∥ m), where H is a suitable hash function, computed over

an unambiguous encoding of the per-signature commitment, the public key, and

the message itself. Value c is the challenge and is interpreted as an integer modulo r.

4. Compute s = k + cd mod r.

The signature is nominally the (R, c, s) triplet.

– Verification of the signature entails validating that the challenge c is correct by recomput-

ing it from R, Q and m, and also checking that the verification equation sG = R + cQ is

fulfilled.
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Since the verifier recomputes the challenge c, that value needs not be transmitted, so the

signature can be reduced to the (R, s) pair. This is what happens with Ed25519, whereR and

s are both encoded over 32 bytes each, for a total signature size of 64 bytes. Another possible

way to encode the signature is to include c instead of R; after all, checking the verification

equation is equivalent to recomputing the point R = sG − cQ and comparing it with the

received value. As long as c is provided,R can be omitted. The total signature size can thus be

reduced, if c is defined to be shorter than the encoding of R; this is what we propose here.

Using (c, s) as the signature instead of (R, s), and reducing the size of c, are not new ideas.

They were already in the original paper from Schnorr[33]. They were proposed again by Nac-

cache and Stern[22], and yet again by Neven, Smart and Warinschi[23]. This last paper also

includes extensive analysis on the security of the construction depending on the particulars

of the hash functionH and the size of c; we summarize here the facts from their analysis that

are relevant to our proposal:

– The security of Schnorr signatures against forgeries does not depend on the collision

resistance of the hash functionH . Thus, existing collision attacks on some hash functions

are (mostly) irrelevant.

– There are known proofs of security that reduce the security of Schnorr signatures to the

discrete logarithm, with some conditions on the size of the output of H . These proofs

are not tight; they show that attacks, assuming “generic” group and hash function H ,

have cost at least 2
n

with a hash function of output 2n bits, and a group of size at least

2
3n

(i.e. a 3n-bit curve, in our context).

– On the other hand, the best known attacks have cost at least 2
n

if the group has size at

least 2
2n

and a hash function output of at least n bits, as long as the hash function is not

an n-bit “narrow-pipe” design (in practice, this means that H should be a hash function

that outputs 2n bits, then truncated to its first n bits).

– Existing standard signature schemes tend to be “in between” these two bounds. Notably,

Ed25519 uses a group of size about 2
252

, i.e. at the low end of the range (2n-bit curve

for n bits of security), but uses a hash function with a massive 4n-bit output, that gets

naturally truncated (through modular reduction) to the 2n-bit size of scalars. In a sense,

Ed25519 is a lot more conservative on the hash function security than on the curve.

The original Ed25519 paper[4] quotes the papers from Schnorr[33] and Neven, Smart

and Warinschi[23], and discusses the possibility of using a short hash output, but ultimately

rejects it because “the use of double-size hashing helps alleviate concerns regarding hash-

function security”, without much further explanations. This is probably explained by the

historical context: that paper was written at a time when serious weaknesses had been found

in MD5 and SHA-1, and nobody really knew whether the SHA-2 function would fall next;

the SHA-3 competition was still ongoing, and there was a general unease with regard to the

security of hash functions. Another possible reason for the choice of (R, s) representation of

signatures in Ed25519 is that it is compatible with the batch verification optimized algorithms

presented in the paper, while the (c, s) format is not.

Faster Verification. While we want to use shorter signatures primarily because there are

many contexts, notably in the world of embedded systems with severe constraints on commu-

nication channels, where any gain on the signature size is important, it turns out that using
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a shorter challenge c also promotes efficiency, by making signature verification faster. Let’s

consider the implementation of a Schnorr signature scheme with a group of size r ≈ 2
2n

, and

a 2n-bit challenge c. The verification equation:

R = sG − cQ

entails computing a linear combination of two points, one of them being the conventional

generator point G. This step is commonly implemented with Straus’s algorithm[34] (also

known as “Shamir’s trick”), to the effect that for a group of size 2
2n

, about 2n point dou-

blings and 4n/w point additions will be used (for a given “window size” w, which is typically

between 4 and 6 bits, depending on the target system, scarcity of RAM, and use of wNAF

encoding of scalars). An optimization first described by Antipa et al[2] consists of splitting

the challenge c into two half-size (n bits) integers c0 and c1 such that c = c0/c1 mod r, and

transforming the verification equation into:

(sc1)G − c1R − c0Q = O

SinceG is the fixed generator point, the point 2
nG can be precomputed, and the value sc1 can

be written as sc1 = t0 + 2nt1 mod r, leading to:

t0G + t1 (2nG) − c1R − c0Q = O

which is a linear combination of four points, but with half-width coefficients (t0, t1, c0 and c1
all have size n bits, not 2n bits). Again using Straus’s algorithm, this leads to the same num-

ber of general point additions (4n/w) as previously, but with only half the number of point

doublings (n instead of 2n). The source challenge cmust also be split into c0 and c1; the use of

Lagrange’s lattice basis reduction algorithm, as optimized in [29], makes that step fast enough

(about 13k cycles on an x86 Coffee Lake core, for a 253-bit source scalar) to make use of An-

tipa et al’s optimization worthwhile.

Now, suppose that we halve the size of the challenge c. The verification equation can now

be written as:

R = s0G + s1 (2nG) − cQ

with a split of s into two n-bit halves: s = s0+2ns1. This is a linear combination of three points

instead of four, with again half-width coefficients. It can thus be computed with the same

number of point doublings (n) but fewer general point additions (3n/w instead of 4n/w)

than with Antipa et al’s method; moreover, the split of s is immediate, and there is no need

to run Lagrange’s algorithm. We also note that the point R can be obtained as an output,

making this verification equation compatible with the use of (c, s) as the signature format.

Benchmarks. We implemented groups jq255s and jq255e, as well as the twisted Edwards

curve Ed25519, in the Rust language, as part of the open-source crrl library available at:

https://github.com/pornin/crrl

The relevant library modules are called jq255s, jq255e and ed25519, respectively. The

exact specifications of the implemented signature scheme are provided in appendix A.2 (in a

nutshell: the BLAKE2s hash function is used for H , with an output truncated to 128 bits).
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Performance was measured on an Intel i5-8259U CPU, clocked at 2.3 GHz (TurboBoost

was disabled), running Linux (Ubuntu 22.04) in 64-bit mode, and using the Rust compiler

version 1.59.0 (“stable” channel, using LLVM 13). To allow use of all local CPU opcodes,

compilation flags “-C target-cpu=native” were used. Table 1 shows the results.

Operation jq255e jq255s Ed25519

Decode point 9371 9295 9491

Encode point 7847 7874 7864

Point multiplication 72080 107875 107730

Point multiplication (base) 43570 44915 40456

Sign 54738 56160 51581

Verify 82839 86837 113983

Point size (bytes) 32 32 32

Scalar size (bytes) 32 32 32

Signature size (bytes) 48 48 64

Table 1: Performance of the crrl implementation of jq255e, jq255s and Ed25519 on 64-bit

x86 (Intel Coffee Lake core); timing measurements in clock cycles.

The “Decode” and “Encode” operations correspond to decoding a group element from

32 bytes, and encoding it into 32 bytes, respectively. “Point multiplication” is multiplication

of a dynamically obtained (but already decoded) point by a full-width scalar; it is used in the

ECDH key exchange (but not in signatures). “Point multiplication (base)” is the same oper-

ation but over the fixed and conventional base point, which allows using multiple precom-

puted tables with affine coordinates; this is the main operation used in key pair generation

and in signature generation. “Sign” is signature generation over a short message (of length 32

bytes); apart from the multiplication of the base point by the scalar k, it also includes genera-

tion ofk (using a derandomized deterministic process), encoding of the pointR, computation

of the challenge c, and computation of the signature element s. Signature generation assumes

that the encoded public key is already available (i.e. the public key is not dynamically recom-

puted from the private key for each signature). “Verify” applies the signature verification,

from the encoded signature as bytes, and a short message (32 bytes); the verification public

key (Q) is provided as an already decoded point (for a verification primitive that receives the

public key in encoded format, the cost of the “Decode” operation must be added to that of

“Verify”).

All operations except “Verify” are fully constant-time. This includes the point decoding

and encoding operations; timing-based side channels leak neither information about the in-

volved points, nor whether the operation succeeded or not. Signature verification (“Verify”) is

assumed to work only on public data and employs non-constant-time implementation strate-

gies (in particular wNAF recoding of scalars).

The implementation of operations modulo 2
255 − m (for integers m = 18651, 3957

and 19, respectively) uses the same code, a generic GF255<m> type that receives the value of

m as a type parameter (i.e. a compile-time constant). The code uses only pure Rust, with

two intrisic functions for additions and subtractions with carry propagation, on x86 plat-

19



forms, but no assembly. Thus, all three curves benefit from the same optimizations at the

field level. The jq255e and jq255s implementations use the formulas described in this paper;

the Ed25519 implementation uses the classic extended coordinates from Hisil, Wong, Carter

and Dawson[18]. In a sequence of successive doublings with Ed25519, all doublings have cost

3M+4S, except the last which has cost 4M+4S.

For point multiplication, 5-bit windows (with constant-time lookups) are used. When

working over the base point, four precomputed tables are used (forG, 2
65G, 2

130G and2
195G)

with affine coordinates (affine extended coordinates (e, u, u2) for jq255e and jq255s, Duif

extended coordinates for Ed25519).

It shall be noted that our performance on Ed25519 is competitive with other optimized

implementations. The eBACS/SUPERCOP benchmarking framework[5] contains several

implementations of Ed25519 signatures, some of which being optimized with 64-bit x86 as-

sembly (amd64-51-30k and amd64-64-24k). The list of measurement machines includes

a system with a Coffee Lake core (called “r24000”), thus comparable to our test system. Signa-

ture generation is reported with cost 48744 cycles; our own figure of 51581 cycles is less than

6% higher
2

. For signature verification, the SUPERCOP implementations achieve 164961 cy-

cles, substantially worse (+34% time) than our code (123474 cycles, when adding the costs

of decoding the verification public key, and the verification itself); this is in part due to the

fact that our code implements the Antipa et al optimization[2,29] while SUPERCOP’s code

does not. However, if we modify our code so as not to leverage that optimization, then we can

still achieve a verification cost of about 129000 cycles (about 138500 cycles with the decoding

of the public key), which is still noticeably lower than SUPERCOP’s implementation cost.

Another well-known Ed25519 implementation is the Rust library ed25519-dalek[14].

That library leverages AVX2 opcodes (using intrinsic functions) and some parallelism inside

the point addition formulas to compute up to four field multiplications simultaneously. On

our test system, they can perform an Ed25519 verification in about 118000 cycles
3

(not count-

ing the public key decoding). That library does not use the Antipa et al optimization; if it did,

it could presumably achieve a similar speed-up as in our case, on the order of 15000 cycles or

so, which would yield a cost slightly above 100k cycles.

These figures vindicate our implementation strategy (i.e., trust LLVM and don’t fiddle

with assembly) and mean that our measurements are a faithful representation of the curves’

“true speed”. We see that, as expected, point decoding and encoding have the same cost for

all three curves. Point multiplication with jq255s offers performance very similar to that of

Ed25519, but jq255e is substantially faster (cost is only 2/3 of that of Ed25519) because

jq255e is a GLV curve[16] and our implementation leverages the endomorphism to avoid

half of the doublings. A contrario, when working over the base point, Ed25519 is about 10%

faster: the multiplicity of precomputed tables for the base point means that much fewer point

doublings are performed, which favours Ed25519, whose point doubling is more expensive

than that of jq255e and jq255s, but its general point addition is somewhat faster. As expected,

the use of a half-width challenge c in signatures provides a substantial boost to signature veri-

2
We could probably slightly improve performance by using more and/or larger precomputed tables

for the base point; our current implementation uses only 6144 bytes for these tables, and could easily

be doubled in size without hitting any L1 cache limit.

3
The AVX2 backend of ed25519-dalek needs a “nightly” compiler, so for this test we used Rust

1.65.0, from August 3rd, 2022.
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fication; even with the decoding of the public key, both jq255e and jq255s provide signature

verification in less than 100k cycles.

It should be remarked that in some contexts, where many signatures should be verified at

roughly the same time, then Ed25519 signatures can use a batched verification process, that

yields substantial gains: the ed25519-dalek authors report a per-verification cost down to

60750 cycles on a Skylake-class Intel CPU
4

. This batch verification is not applicable to our

short signatures in (c, s) format. To make our signatures amenable to that process, they must

use the (R, s) format, which forfeits the size advantage (signature encoding size would be 64

bytes instead of 48), while still keeping the speed gain on non-batched verifications.

From these figures, we can conclude that indeed jq255e and jq255s are fast. They more-

over provide prime order groups, a primitive adequate for building cryptographic protocols.

A prime order group can be obtained over Curve25519 with Ristretto[3]; we implemented it

as well, and obtain the same performance as Ed25519 (as expected) except for point encoding,

which is slightly more expensive, and in fact costs as much as point decoding (which is again

expected, both operations involving a square root).
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A Cryptographic Algorithm Specifications

In this section, we specify strict rules for cryptographic algorithms built on top of the jq255e

and jq255s groups. We try to cover all edge cases, as an attempt to avoid the kind of messy

situation that impacts existing deployments of Ed25519, where implementations don’t al-

ways agree with each other about the validity of some signatures, leading to issues in some

applications, especially consensus protocols[11].

In all this section, a byte is really an octet; it has a numerical value in the 0 to 255 range,

and contains eight bits, numbered from 0 (least significant bit) to 7 (most significant bit).

A.1 Encoding Rules

Field Elements. Elements of the finite field Fq (with q = 2
255 − 18651 for jq255e, 2

255 −
3957 for jq255s) are encoded into exactly 32 bytes:

– A field element x ∈ Fq is considered as an integer in the 0 to q − 1 range, which is then

encoded using the unsigned little-endian convention (least significant byte comes first).

– Encoding always uses 32 bytes, even if the integer could have fit into fewer bytes.

– Decoders MUST reject the source bytes, and return Invalid, if any of the following

conditions hold:

• The source length is not exactly 32 bytes.

• The integer resulting from unsigned little-endian interpretation of the source bytes

is not in the 0 to q − 1 range.

In particular, there is no ignored bit: even though the value of q implies that the most sig-

nificant bit of the last byte is always zero, that bit MUST NOT be ignored by decoders.

Moreover, checking that the most significant bit of the last byte is zero is not sufficient

validation; for instance, an encoding of the integer q itself, over 32 bytes, MUST be re-

jected as Invalid, since it is not in the 0 to q − 1 range. There is no implicit reduction

modulo q.
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Scalars. Scalars are integers modulo r, with r being the order of the group. For jq255e and

jq255s, r is a prime integer close to 2
254

(the order of the underlying double-odd curve is 2r).

Scalars are encoded with rules similar to those for field elements:

– A scalar is encoded as an integer in the 0 to r−1 range over exactly 32 bytes with unsigned

little-endian convention.

– Decoders MUST verify that the received value is in the 0 to r − 1 range. There is no

ignored bit in the last byte. There is no implicit reduction modulo r.

Group Elements. A group element (often called “point”, though a group element is,

strictly speaking, a set of two curve points, which are called the representants of the group ele-

ment) is encoded by using the process described in section 4, and made explicit in sections 6.1

and 6.2:

– The sign convention (sign function) uses the least significant bit of the representation

of the input field element as an integer in the 0 to q − 1 range; equivalently, the sign is

the value of the bit number 0 in the first byte of the encoding of the element as specified

previously. Thus, 1 is negative, but −1 (represented as q − 1) is not. 0 is non-negative.

– Upon encoding, the group element representant whose e coordinate is non-negative is

chosen; its u coordinate is encoded into bytes using the rules for field elements.

– Upon decoding, the input bytes are decoded into a field element u, from which the cor-

responding coordinate e is recomputed. If the input is valid, then there are two choices

for the value of e, exactly one of which is non-negative; the non-negative value is chosen.

The neutral element of the group is a valid group element; its u coordinate is zero (for

both representants), and therefore it is encoded as the field element 0, which leads to exactly

32 bytes of value 0x00.

Private Keys. A private key is a non-zero (secret) scalar. A private key is encoded with the

same rules as scalars, with one additional rule:

– When decoding a private key from bytes, decoders MUST reject the scalar if it is a valid

encoding of the value zero.

A scalar of value zero corresponds to 32 bytes of value 0x00. Private keys are never equal

to zero.

Public Keys. A public key is a non-neutral group element. If the private key is the scalar

d, then the public key is the group element dG, where G is the conventional base element in

the group (G has order exactly r). Public keys are decoded and encoded using the rules for

group elements, with one additional rule:

– When decoding a public key from bytes, decoders MUST reject the group element if it

is a valid encoding of the neutral element.

The neutral group element encodes as 32 bytes of value 0x00. Public keys are never equal

to the neutral group element.
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A.2 Signature Specification

A.2.1 Pre-Hashing and Hash Function Choice

Apart from the used group (which is jq255e or jq255s in this specification), the signature

scheme is configured with a hash function. There are three places where the hash function is

used:

– to process the message data (in “pre-hashed” mode);

– to compute the challenge c;
– to generate the per-signature secret scalar k.

In this specification, the BLAKE2s[32] hash function is used for the second and third func-

tionalities. If the message data is pre-hashed, then it is recommended to use BLAKE2s for this

step as well.

BLAKE2s can optionally be configured (through its “parameter block”) with a specific

output size, a secret key, a salt, a personalization string, and a tree mode. We use none of these

features. Whenever BLAKE2s is used in this specification, it is run with its default parameters

for hashing. In particular, the hash output size is 32 bytes (256 bits); this applies even if we

later on truncate that output to its first 128 bits.

Pre-hashing the input message means that the signature is computed and verified not

on the message m itself, but on H ′ (m) for some hash function H ′. Pre-hashing facilitates

streamed processing. If the data is not pre-hashed (called here the “raw mode”), then the signer

must already know the signing key pair when starting to process the message data, and verifiers

must known the public key and the signature value when starting to process the message data.

In a situation involving a long message, signed by the sender and verified by the recipient, then

use of the raw mode implies that either the sender or the verifier must be able to buffer the

complete message. On the other hand, raw mode is not impacted by collision attacks in H ′,
since in that case there is no H ′. This was the reason raw mode was preferred in the original

EdDSA[4]; in the RFC that now specifies Ed25519[21], raw mode is called “PureEdDSA”.

Given an input messagem (a sequence of bytes), the prepared message is the byte sequence

M defined as follows:

– In raw mode (no prehashing), M is a single byte of value 0x52, followed by m itself.

– In pre-hashed mode, M is the concatenation of, in that order:

• a single byte of value 0x48;

• the hash function symbolic name, in ASCII;

• a single byte of value 0x00 (which marks the end of the hash function name);

• the hashed message H ′ (m).
Hash function names use lowercase ASCII letters and digits; other punctuation signs are

removed. Table 2 lists the currently defined names.

A.2.2 Signature Generation

Letd be the signer’s private key (a non-zero scalar), andQ = dG the corresponding public key

(with G being the conventional base point in the relevant group). The signature generation

process on an input message m goes as follows:
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Hash function Symbolic name Reference

SHA-256 sha256 [24]

SHA-384 sha384 [24]

SHA-512 sha512 [24]

SHA-512/256 sha512256 [24]

SHA3-256 sha3256 [25]

SHA3-384 sha3384 [25]

SHA3-512 sha3512 [25]

BLAKE2s blake2s [32]

BLAKE2b blake2b [32]

BLAKE3 blake3 [26]

Table 2: Defined hash function names (for use with signatures in pre-hashed mode).

1. Process the input message m into the prepared message M, as specified in section A.2.1.

2. Generate a per-signature secret scalar k. The signer is free to use any method which en-

sures that each value k is used with a single message only (for a given signing key), is secret,

and is chosen with a distribution indistinguishable from uniform probability among

scalars. A specific generation process is described later on (section A.2.4), and is recom-

mended for proper security in all implementation contexts.

3. Compute the point R = kG.

4. Apply the BLAKE2s hash function on the concatenation of, in that order:

– the point R (encoded into 32 bytes);

– the signer’s public key Q (encoded into 32 bytes);

– the prepared message M.

The challenge c is then defined to be the first 16 bytes of the 32-byte output of BLAKE2s.

5. Compute the scalar s = k+ cd (interpreting c as an integer in the 0 to 2
128−1 range, using

the unsigned little-endian convention).

The signature is then the concatenation of, in that order:

– the challenge c (16 bytes);

– the scalar s (encoded into 32 bytes).

The total signature length is exactly 48 bytes.

It is theoretically possible (though very improbable) that k = 0; in such a case, R is the

group neutral. This is considered valid. Similarly, it is acceptable that s = 0 or that c is a

sequence of 16 bytes of value 0x00. The probability that any of these cases occurs with a

proper implementation of the signature generation is so vanishingly small that it will not

happen in practice
5

.

A.2.3 Signature Verification

Signature verification uses as inputs a message m, a public key Q, and a signature S, and out-

puts a Boolean result (True if the signature is valid for the messagem relatively to the public

key Q, False otherwise). The process is the following:

5
Or, more accurately, when it happens, it is almost always due to some other hardware failure.
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1. Process the input message m into the prepared message M, as specified in section A.2.1.

2. Verify that the signature S has length exactly 48 bytes; otherwise, return False.

3. Split S into the challenge c (first 16 bytes) and the encoded scalar sb (last 16 bytes), then

decode sb into the scalar s. If the decoding process of sb returns Invalid, then return

False.

4. Compute the point R = sG − cQ (interpreting c as an integer in the 0 to 2
128 − 1 range

using the unsigned little-endian convention).

5. Using M, Q and the just computed point R, recompute the challenge value c′ with the

same process as in step 4 of the signature generation process.

6. If c = c′, then return True; otherwise, return False.

As previously pointed out, it is acceptable that s or c be zero, or that R be the neutral

point. The comparison between c and c′ is strict bytewise equality.

A.2.4 Generation of the Per-Signature Scalar k

How the signer generates the secret scalar k is invisible to verifiers, and any method may be

used as long as it fulfills the proper security expectations of unpredictable uniform random-

ness. However, it is RECOMMENDED to use the process described here, because it ensures

that an adequately safe value is obtained, even if the signer’s hardware system does not have a

readily available cryptographically strong source of randomness. Moreover, using exactly that

process makes the implementation more easily testable against known test vectors.

The scalar k is generated over the following inputs:

– the signer’s private key d;

– the signer’s public key Q;

– the prepared message M;

– an additional seed z, which is a sequence of bytes of (almost) arbitrary length and con-

tents.

The scalar k is then computed as follows:

1. The BLAKE2s hash function is evaluated over the concatenation of, in that order:

– the signer’s private key d (encoded over 32 bytes);

– the signer’s public key Q (encoded over 32 bytes);

– the length (in bytes) of z, expressed over 8 bytes using the unsigned little-endian

convention;

– the value z itself;

– the prepared message M.

2. The BLAKE2s output (32 bytes) is then interpreted as an integer in the 0 to 2
256 − 1

range, using the unsigned little-endian convention. This integer is then reduced modulo

r to yield the scalar k.

Note that the BLAKE2s output is reduced modulo r; this is not the usual decoding of a scalar

from bytes, since it does not reject out-of-range values.

The use of a hash function over the private key and source message is known as deran-
domization. Ed25519[4,21] uses it. It has also been specified in general for DSA and ECDSA
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with arbitrary curves[28]. When z has a fixed value (e.g. the empty string), the process is de-

terministic. It is safe, though it has been noted that fully deterministic signature generation

makes the implementation somewhat fragile with regard to some local side-channel attacks,

in particular fault attacks[1,27]. To strengthen the process even in that case, a randomly gen-

erated seed z can be used; there are no specific requirements on that randomness, and even a

simple monotonic counter could be used. Even if the source of randomness for z is so flawed

that it is stuck and always returns the same value, then the derandomization process described

here still makes the signatures safe.

The process uses both the signer’s private key d and the public keyQ, even though the lat-

ter can be deterministically generated from the former (with Q = dG), because that protects

against a possible misuse of the API of some possible implementations of the libraries. This

was recently reported for Ed25519[10]. The gist of the issue is that since signing generation

requires knowledge of the encoded public key (to compute the challenge), and regenerating

the public key from the private key is about as expensive as producing the signature itself,

some libraries accept that the caller provides the private and public keys as two separate pa-

rameters, under the assumption that they will be stored together. Then, some applications

would allow attackers to reference a private key and provide a distinct public key separately,

and that leads to key reconstruction attacks. Any signature library can be designed to enforce

regeneration of the public key from the private key, but that implies that loading the private

key incurs the computational cost of recomputing the public key. Using the public key as

part of the derandomization process that generates k is a much cheaper way to mitigate this

specific attack.

Warning: In general, producing a modular integer by reducing a pseudorandom sequence

of bytes of the same length as the modulus yields a biased distribution, which, in the context

of Schnorr signatures, would leak information about the private key and eventually allow

adverserial reconstruction of that key. This issue is avoided in jq255e and jq255s by the fact

that for these groups, the modulus r of the ring of scalars is close enough to a power of two

that such biases are negligible (for both groups, |r − 2254 | ≤ 2
127

). If this specification is ever

adapted to other groups, then this part of the generation of the per-signature scalar MUST

be reviewed carefully and possibly adjusted.

A.3 ECDH Key Exchange Specification

The ECDH (elliptic curve Diffie-Hellman) protocol is a key exchange mechanism. Since it

uses only one message per participant, it can also be used for asymmetric encryption, if com-

bined with a symmetric encryption scheme.

Warning: In ECDH, both parties have private/public key pairs. These key pairs are syntac-

tically identical to the key pairs used in Schnorr signatures, making it possible to use the same

key pair for signatures and for key exchange and asymmetric encryption tasks. In general, this

is NOT RECOMMENDED. The main flaw with such designs is that private keys for en-

cryption and for signatures normally have incompatible lifecycle requirements: private keys

for encryption should have backups, since loss of the private key implies loss of the data that

was encrypted against the corresponding public key; but private keys for signature should not

have backups, since their value lies in their exclusive control by the signer, and loss of the pri-

vate signing key does not invalidate previously issued signatures. On a different level, possible

interactions between a signing system and a key exchange system working over the same pri-
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vate key are not well studied, and some unwanted interaction might allow for faster attacks,

e.g. using the ECDH engine as a helper for making signature forgeries, or vice versa.

In ECDH, each party runs the following process:

1. Generate a new key pair (d1, Q1). The private key d1 should be selected as a random non-

zero scalar; zero is not an acceptable private key. The public key is computed asQ1 = d1G.

2. Encode Q1 into the 32-byte sequence p1, and send p1 to the peer.

3. Receive the 32-byte sequence p2 from the peer, and decoded it as the public keyQ2. This

decoding process may fail (i.e. return Invalid) if the length of p2 is not exactly 32 bytes,

or is not a valid encoding of a group element, or is the valid encoding of the neutral

element (the neutral is a valid point but not a valid public key); in such a case, set Q2

to any other point (e.g. the base point G) but remember that the decoding failed. The

Boolean flag ok is set to True if the decoding succeeded, False otherwise.

4. Compute the point k1Q2 and encode it into the 32-byte sequence h.

5. Derive h into a 32-byte symmetric key appropriate for further cryptographic operations

by computing the BLAKE2s hash function over the concatenation of, in that order:

– If p1 is lexicographically lower than p2, then p1 followed by p2; otherwise, p2 followed

by p1.
– If ok is True, then a single byte of value 0x53 followed by h; otherwise, a single

byte of value 0x46 followed by d1 (encoded into 32 bytes).

6. Return the BLAKE2s output as the established symmetric key, along with the value of

the ok flag.

The use of the ok flag is meant to allow implementations to hide from outsiders observ-

ing side channels (such as an error status or computation time) whether the process worked;

this can be an interesting feature in some protocols where the involved points are hidden from

the attacker, but potentially alterable. If the decoding failed, then the resulting key (BLAKE2s

output) is unpredictable by attackers, but still deterministic from the inputs (sending the

same p2 to a recipient reusing the same p1 will result in the same BLAKE2s output, regardless

of whether p2 is a valid point encoding or not). Hiding the success status of the operation is

rarely needed and most implementations are expected to treat the p1 and p2 values as public

data (though of course d1, d2 and h are secret).

If the p1 and p2 messages were generated correctly and not altered in transit, then both

parties compute the same h (since k1Q2 = k2Q1) and thus the same BLAKE2s output. The

values p1 and p2 are used as extra inputs to BLAKE2s so that the resulting key is bound to the

exchanged messages, which can be convenient for proving the security of a protocol that lever-

ages ECDH. The lexicographic ordering of p1 and p2 is equivalent to the numerical ordering

of integers obtained by interpreting p1 and p2 with the unsigned big-endian convention (and

not the little-endian convention we used everywhere else in this document); however, it is ex-

pected that implementations will compare the byte values directly, e.g. with the C function

memcmp(), if the exchanged messages p1 and p2 are public data.

A.4 Hash-to-Group Specification

In section 6.9, maps from field elements to points were defined, for both jq255e and jq255s.

We use such maps to specify hash-to-group operations that take as input an arbitrary sequence

of bytes, and produce points in the group. The hashing process is one-way and produces an
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output distribution indistinguishable from uniformly random selection. The general tech-

nique (due to Brier et al[9]) is to use a hash function to derive two field elements from the

input, then map each field element to a point, and finally add the two points together.

Given an input message m (a sequence of bytes), we first compute the prepared message
M in exactly the same way as in section A.2.1: M is either a single byte of value 0x52 fol-

lowed by the raw data, or a single byte of value 0x48 followed by the pre-hash function name

(terminated by a zero) and then h(m), for some hash function h. Whether data should be

pre-hashed is an application choice and depends on the usage context; as will be seen below,

M will be processed twice with BLAKE2s, so that pre-hashing improves performance ifm is

large. If pre-hashing, then the used hash function h MUST be an appropriately secure hash

function; by default, BLAKE2s is recommended.

Once M is obtained, the following steps are applied:

1. Compute BLAKE2s over the concatenation of a single byte of value 0x01 and the pre-

pared message M (in that order); the 32-byte output of BLAKE2s is then interpreted as

an integer (using the unsigned little-endian convention) which is then reduced modulo

q to yield the field element f1.
2. Map f1 to the point P1 using the appropriate map (algorithm 10 for jq255e, algorithm 11

for jq255s).

3. Compute BLAKE2s over the concatenation of a single byte of value 0x02 and the pre-

pared message M (in that order); the 32-byte output of BLAKE2s is then interpreted as

an integer (using the unsigned little-endian convention) which is then reduced modulo

q to yield the field element f2.

4. Map f2 to the pointP2 using the appropriate map (algorithm 10 for jq255e, algorithm 11

for jq255s).

5. Compute P = P1 + P2 as the output of the hash-to-group process.

It shall be noted that the BLAKE2s output is turned into a field element through a mod-

ular reduction; this is distinct from decoding a field element, in that the latter would reject

out-of-range inputs. While, in general, reducing a binary input modulo a prime induces some

selection biases, this is not a problem for the fields used in jq255e and jq255s because their

respective orders (denoted q) are very close to a power of 2, so that the resulting biases are

negligible.
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